How Can We Help You?



Private Biometrics General Questions

Biometrics is the technical term for body measurements and calculations. It refers to metrics related to human characteristics.

Biometrics authentication (or realistic authentication) is used in computer science as a form of identification and access control. It is important to note that privacy with biometrics is essential since biometric, in contrast to password, cannot be reset.

A facial recognition is face recognition technology measures and matches the unique characteristics for the purposes of identification or authentication.

Facial recognition is a category of biometric software that maps an individual's facial features mathematically and stores the data as a faceprint. The software uses deep learning algorithms to compare a live capture or digital image to the stored faceprint in order to verify an individual's identity.

Yann LeCun and Yoshua Bengio introduced the concept of CNNs in 1995. A con-volutional neural network is a feed-forward network with the ability of extracting topological properties from the input image. It extracts features from the raw image and then a classifier classifies extracted features. CNNs are invariance to distortions and simple geometric transformations like translation, scaling, rotation and squeezing.

Convolutional Neural Networks combine three archit ectural ideas to ensure some degree of shift, scale, and distortion invariance: local receptive fields, shared weights, and spatial or temporal sub-sampling. The network is usually trained like a stan-dard neural network by back propagation.

In information technology, a neural network is a system of hardware and/or software patterned after the operation of neurons in the human brain. Neural networks -- also called artificial neural networks -- are a variety of deep learning technologies. Commercial applications of these technologies generally focus on solving complex signal processing or pattern recognition problems. Examples of significant commercial applications since 2000 include handwriting recognition for check processing, speech-to-text transcription, oil-exploration data analysis, weather prediction and facial recognition.

Biometrics have a long-held hope of replacing passwords by establishing a non-repudiated identity and providing authentication with convenience. Convenience drives consumers toward biometrics-based access management solutions. Unlike passwords, biometrics cannot be script-injected; however, biometric data is considered highly sensitive due to its personal nature and unique association with users. Biometrics differ from passwords in that compromised passwords may be reset. Compromised biometrics offer no such relief. A compromised biometric offers unlimited risk in privacy (anyone can view the biometric) and authentication (anyone may use the biometric). Standards such as the Biometric Open Protocol Standard (BOPS) (IEEE 2410-2016) provide a detailed mechanism to authenticate biometrics based on pre-enrolled devices and a previous identity by storing the biometric in encrypted form. This solution allows authentication and identification to occur in up to polynomial time, allowing for search in encrypted biometric stores with speed, accuracy and privacy.

The act of signing/registration people up for participation is enrollment.

Since we have little control over devices such as cameras or sensors, the biometric template arrives as plaintext. If we encrypt it immediately and only process it as ciphertext, we have the maximum practical level of privacy. An important part of offering this highest level of privacy is a one-way encryption algorithm, meaning that given ciphertext, there is no mechanism to get to the original plaintext. Many one-way encryption algorithms exist, such as MD5 and SHA-512. However, these algorithms are not homomorphic. This means we cannot do a closeness match between two ciphertext vectors using Euclidean measurements. Open Inference offers a general purpose solution that produces biometric ciphertext that is Euclidean-measurable. We do this using a Neural Network. We then apply a classification algorithm to allow for one-to-many identification. This solution maximizes privacy and runs between O(1) and O(log⁡(n)) time.

Enrollment is the act of introducing a Subject to the indentification or authenication system. Enrollment, for Open Inference, is the process of extracting features and training a neural network for a particular subject. For Enrollment to work reliably, we give as mnay biometric instances as possible. We use in excess of 10 images, which the software morphs into 250 distinct images. The system then trains on 250 images. All of the training and images are encrypted BEFORE any form of training guaranteeing full privacy.

Search is a prediction across a trained neural network. Artificial neural networks respond to a prediction request by querying a neural network. The network responds with an accurate response as to who is the subject based on an encrypted search.

for voting, we take several searches and the correct answer is the response with plurality. For example, we take 3 facial images. The neural network is 99 percent accurate. So we use the three images and simultaneously search. There is a 1 percent chance we are wrong, voting makes our result 100 percent accurate.

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API. TensorFlow was originally developed by researchers and engineers working on the Google Brain Team within Google's Machine Intelligence research organization for the purposes of conducting machine learning and deep neural networks research, but the system is general enough to be applicable in a wide variety of other domains as well.

A feature vector is an n-dimensional vector of numerical features that represent some object. Many algorithms in machine learning require a numerical representation of objects, since such representations facilitate processing and statistical analysis.

For biometrics to train properly the biometric itself must make it easy to train. If all biometrics are similarly reprsented, then the training is more accurate. We do thisby preprocessing the biometric which involes aligning.

In computer vision, alignment: is the process of finding the spatial mapping, i.e. elements in one image into meaningful correspondence with elements in a second image.

Cropping is the removal of the outer parts of an image to improve framing, accentuate subject matter or change aspect ratio.


Getting Started With Private Biometrics

Step 1. Face Detection

Our Web app for Demo is already live on our site OR using browse .

Once Demo page is loaded, it will show system camera object(Face) on the image preview circle and will also shows words to say on preview image.

Words to say won’t be displayed on image preview, until it doesn’t detects any human face.

It is showing you each and every status of recognition which is being processed using Biometric.

Application also keep instructing user to place their image on right position with distance.

Percentage progress bar showing Image recognition process and as much as it scans and identifying users correctly, it will be raising up.

Once application scanned user’s image accurately, it will clears out all the other status and instructions from screen, will just show Images gathered successfully.


Step 2. Voice Identification

Words to say will be published on screen once Image has been gathered correctly and Percentage progress bar reached to 99%.

As per second algorithm, user must has to speak word displayed on screen after image detected successfully.

Our Web service will be verifying spoken words with set of words displayed on screen.


Step 3. Results

Results of Voice authentication can be Identity Matched or Mismatched.

If Voice Authentication MisMatched :

Meanwhile, Word verification if it won’t match with displayed words then it will show error message on screen. “Words incorrect, try again!

If it gets failed, will start face scanning process again with new random set of keywords.

If Voice Authentication Matched :

When User’s Face detection passed and Voice identification matched, here app will be verify two conditions, Whether this Detected Face is registered into system or not. It will show user’s details if user already registered and If not then will redirects to Sign up form.

Enroll New User Details

Once Users Face and Voice Identification passed successfully and web service unable to find this data into Private Biometric Cloud, then it redirects to user signup form which asks to fill Name, Email and Phone number to enroll this user’s identity into Private BioMetric cloud.

Now onwards whenever this user face scanned into application and voice identified successfully, it will returns this data in application.

User Identity Returned

Private Biometrics Web Services will process this Detected Face & Voice data into cloud and It retrieves details of authenticated user which entered during enrollment.

Currently It returns Email, Name and Phone number of this valid authenticated user.

Words to say will be published on screen once Image has been gathered correctly and Percentage progress bar reached to 99%.

As per second algorithm, user must has to speak word displayed on screen after image detected successfully.

Our Web service will be verifying spoken words with set of words displayed on screen.

Results of Voice authentication can be Identity Matched or Mismatched.


Meanwhile, Word verification if it won’t match with displayed words then it will show error message on screen. “Words incorrect, try again!

If it gets failed, will start face scanning process again with new random set of keywords.


When User’s Face detection passed and Voice identification matched, here app will be verify two conditions, Whether this Detected Face is registered into system or not. It will show user’s details if user already registered and If not then will redirects to Sign up form.